Monodromy of the quantum 1:1:2 resonant swing spring

نویسندگان

  • A. Giacobbe
  • R. H. Cushman
  • D. A. Sadovskií
  • B. I. Zhilinskií
چکیده

We describe the qualitative features of the joint spectrum of the quantum 1:1:2 resonant swing spring. The monodromy of the classical analogue of this problem is studied in Dullin et al. [Physica D 190, 15–37 (2004)]. Using symmetry arguments and numerical calculations we compute its three-dimensional (3D) lattice of quantum states and show that it possesses a codimension 2 defect characterized by a nontrivial 3D-monodromy matrix. The form of the monodromy matrix is obtained from the lattice of quantum states and depends on the choice of an elementary cell of the lattice. We compute the quantum monodromy matrix, that is the inverse transpose of the classical monodromy matrix. Finally we show that the lattice of quantum states for the 1:1:2 quantum swing spring can be obtained—preserving the symmetries—from the regular 3D-cubic lattice by means of three “elementary monodromy cuts.” © 2004 American Institute of Physics. [DOI: 10.1063/1.1811788]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy.

We consider the wide class of systems modeled by an integrable approximation to the 3 degrees of freedom elastic pendulum with 1:1:2 resonance, or the swing-spring. This approximation has monodromy which prohibits the existence of global action-angle variables and complicates the dynamics. We study the quantum swing-spring formed by bending and symmetric stretching vibrations of the CO2 molecul...

متن کامل

Monodromy in the resonant swing spring

This paper shows that an integrable approximation of the spring pendulum, when tuned to be in 1 : 1 : 2 resonance, has monodromy. The stepwise precession angle of the swing plane of the resonant spring pendulum is shown to be a rotation number of the integrable approximation. Due to the monodromy, this rotation number is not a globally defined function of the integrals. In fact at lowest order ...

متن کامل

Experimental demonstration of classical Hamiltonian monodromy in the 1:1:2 resonant elastic pendulum.

The 1:1:2 resonant elastic pendulum is a simple classical system that displays the phenomenon known as Hamiltonian monodromy. With suitable initial conditions, the system oscillates between nearly pure springing and nearly pure elliptical-swinging motions, with sequential major axes displaying a stepwise precession. The physical consequence of monodromy is that this stepwise precession is given...

متن کامل

Fractional Hamiltonian Monodromy from a Gauss-manin Monodromy

Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskíı and B. I. Zhilinskíı for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface con...

متن کامل

The Effect of Structural Parameters on the Electronic States and Oscillator Strength of a Resonant Tunneling Quantum Well Infrared Photodetector

In this paper a resonant tunnelling quantum well infrared photodetector (RT-QWIP) is discussed. Each period of this photodetector structure comprises of a resonant tunnelling structure (AlAs/AlGaAs/AlAs) nearby a quantum well (AlGaAs/GaAs). In this photodetector, photocurrent is produced when an electron makes a transition from the ground state of the well to an excited state which is coupled t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004